Bat Red Tape!

Since my last post we’ve been progressing quietly.  Fine tuning the design, getting detailed drawings done and in for building regs, organising the legal side of things, applying for conditions to be discharged etc.  A small spanner in the works has reared its head however.  Nothing so severe as to derail the project, but enough to scupper my plans of getting a good bit of the prep work done before a main contractor might start in September.  That spanner comes in the form of a piece of paper called a ‘Natural England Licence’.  A licence whose purpose I have not yet fathomed, other than the creation of red tape, and a nice little earner for an ecologist who gets to complete said red tape.

Invariably the response I’ve have got from people in and around the building trade when I’ve mentioned a bat was found during the surveys we had done is along the lines of “why didn’t you make sure you smoked any bats out before the survey”?!  Whilst I’ve perhaps not said it out loud, I’ve definitely thought because surely this is as equally anti-social as the likes of fly-tipping?  Indeed it’s a driving force of our project that we should have a positive impact on the environment!

Attempting to fill in the forms for this Natural England Licence however has definitely elevated my blood temperature several degrees.  First off let’s be clear that our site is in fact a very low impact one in terms of bat habitat.  The single bat that was found inside the stone barn that entails the conversion element of the design was only found during one of the two surveys and there was no evidence that it roosted in the building.  It was a Brown Long-eared bat, which I now understand to be common across the UK and Europe.  The lean-to garages with corrugated tin roofing was described from the outset as a low quality habitat for bats though a single dropping was found inside (!).  We were of course happy however to put in a belt and braces mitigation strategy to ensure in fact that there will be more bat habitat after the development than before.  This strategy was designed by the consultant ecologist and signed off by the authority ecologist.

I was a little aggrieved that we have to pay for an ecologist to be on site during the demolition of the garaging and the stripping of the roof of the barn, given that no bats were found roosting, and that the garaging has been described as poor bat habitat!  Seems a little bit of a ‘jobs for the boys’ type scenario.  I also understood at the time the mitigation strategy was set out that a Natural England licence was required to carry out this work.  In my naivety I had understood this to be a licence the ecologist must possess to carry out the work.  Seems sensible really, and given that our ecologist confirmed she could monitor the demolition I thought we were set.

But I have now of course learnt that the Natural England Licence is a licence that must be applied for simply for its own merit.  It appears not enough to have two ecologists sign off a pretty comprehensive strategy for a scenario where one common bat was found to temporarily be present in the building and where the other building concerned in the development is of low-habitat value, but we have to tell Natural England all about it so they can give their seal of approval.  And when I say all about it I mean all about it.  It’s not simply having them check off the bat survey report.  The forms they require completed are utterly ridiculous. I once at university did an exercise completing an Environmental Impact Assessment for a large off-shore wind farm, and the forms required for this Natural England Licence are roughly equivalent.  £350 I have to pay the ecologist in order to have these forms completed; and it takes Natural England 8 weeks to turn them around!!  They want to know what the “need” is for the project, couldn’t it be “avoided”, what would happen if we did “nothing”.  Then they require all your answers to be backed up by evidence! If you are so concerned about every detail of the project then READ the PLANNING APPLICATION I found myself screaming in my head.

But what irritates me the most is that all this wholly unnecessary red tape is surely completely counterproductive to the supposed aims of Natural England and ecologists.  A nice little fee earner it may be for the bat ecologist fraternity, but in terms of supporting the bat population surely all it will end up doing is encouraging the less scrupulous to take the necessary steps to ensure that they don’t face a scenario where they have to deal with organisations that behave in such a way?!

 

 

Energy systems…

Energy Systems

Designing appropriate energy systems for low-energy is quite a complex task really.  The electricity side of things, for grid connected houses, is relatively straightforward; generate what you sensibly can and export any surplus.  If that generation is large then the capacity of the grid, particularly in distributed rural areas like our own, which wasn’t designed to integrate decentralised sources of ‘microgeneration’, can be an issue.  Solar PV is the only electricity generating technology we can employ in our instance.  That is a pity because high up in rural Northumberland our wind resource is fantastic but despite having a little bit of land we just don’t have a suitable location within our own title.  We had hoped to buy a small patch of land from the farmer just big enough in the neighbouring field for the footprint of a turbine about 150m from the house on a ridge line where  the turbine would have enjoyed sweeping winds from 360 degrees but ran into complications unfortunately.  We now just look enviously across the valley at a neighbouring farm which has installed a micro-turbine that would appear to be harvesting energy with abandon!  Wind turbines may be emotive but onshore wind remains the cheapest form of renewable electricity available in the UK and at a micro level turbines rarely have the sort of visual impact which so many find upsetting either.  Instead though we’re opting for a solar photovoltaic array, keeping it below the 4kW mark so as to benefit from the maximum feed in tariff and not trouble the grid capacity.

Designing heating systems for low-energy houses would appear to be a bit more complicated.  Passivhaus design, founded as it is on principles of reducing energy demand, is obviously a good place to start, aiming as it does to do away with the need for space heating altogether.  Confirmation that a house will attain Passivhaus standards still requires the use of Passivhaus design software – the Passivhaus Planning Package (PHPP) – and of course good craftsmanship to ensure that the final building fabric meets the quality specified on paper.  Once achieved though the space heating in essence takes care itself.  More problematic are instances such as our own where factors beyond our control – our south facing elevation is primarily a very large existing solid stone wall – prevent us achieving a passive level of design, meaning supplementary space heating is required, yet the demand, relative say to a house that simply meets building regulations, is still very low.

We have used PHPP, but the further one gets away from Passivhaus levels of performance, the less reliable the model becomes.  Naturally we are obliged to carry out a SAP assessment (SAP or Standard Assessment Procedure is the government endorsed methodology that underlies building regulations and the like) so the house will be modelled at that stage too but SAP is known to be a rather blunt instrument.  The house has also been modelled using Integrated Environmental Solutions (IES) software, again not ideal because IES seems to be geared much more towards commercial buildings than one off houses.  Depending on how exactly the model was set up IES software indicated, using Passivhaus standard u-values (i.e. 0.15W/m2K for walls and roof, and .8W/m2K for windows), that the peak heat load was between 6.6 kW and 9kW.  Using similar u-values in the PHPP but alternating between an airtightness figure of 0.6 and 1.2 ach@50 Pa because we’re concerned about meeting the lower airtightness figure due to the conversion element of the build we got figures of 4.5kW and 5.2kW respectively for peak heating load.  Thus relatively there’s quite a lot of variation in these figures which makes designing the heating system tricky – you don’t want to install excess capacity yet you don’t want to leave the property under-heated.  This is a really important element of the house to get right though; obviously thermal comfort is dependent on it but also we don’t want to be coming back and having to make major alterations because we didn’t get it right at this stage!  I’ll post more on the heating system in due course…

Construction system

So it probably appears that since my posts in December there hasn’t been much happening on the project.  That’s because most of that time has been spent exploring the feasibility of using previously blogged about Brettstapel as our construction method.  Pursuing a system no UK fabricator or contractor has used to build a house has been a time intensive process.  Architect Dan, who has been as attracted as me to the sustainability qualities of the system, and I, did manage to establish that it was possible to put together a supply chain.  We were able to source appropriate domestic timber, we had a company in line to mould the timber, we had expert support – and thanks should go to Dainis Dauksta of Woodknowledge Wales and Deb Turnbull of Edinburgh Napier for their help – but we couldn’t get a fabricator/erector to consider taking on the task at a reasonable rate.  Perhaps understandably given the innovative nature of the product we found that people either didn’t want to touch it or they wanted to attach a considerable premium to it.

That’s not to say there aren’t companies interested in pursuing this system.  It was interesting to learn for example, through the Brettstapel Network at the Edinburgh Napier Centre for Offsite Construction + Innovative Structures about MAKAR, a closed panel timber frame specialist who are looking to integrate Brettstapel production into their conventional manufacturing processes.  In reality though for Brettstapel to become a more mainstream option it is going to need a great many more forward thinking companies to get behind it, and for a more projects, and certainly initially those with more accommodating budgets than our own, to consider specifying it.  I continue to hold the opinion that it is a fantastic system with excellent sustainability credentials and is therefore to be much encouraged.

Our thoughts are therefore turning toward a more conventional timber build system.  Intriguingly Mark Siddall, another north-east architect, who was behind Steel Farm Passivhaus, and who I heard speak at Ecobuild, is of the opinion that on the whole you should use whatever system and materials local contractors are familiar with, which in the north-east is masonary.  I can’t say I’m convinced by that.  If we are to take a holistic approach to sustainable building then the embodied carbon of the building fabric has to be given consideration in which case timber frame will inherently be more attractive than masonary.  Cob, straw bale etc. could come into consideration but given what we’re trying to achieve in terms of a contemporary open plan living area within a vaulted roof sapce they just don’t seem practical.  A more standard timber frame obviously has its benefits.  People are obviously more familiar with it giving a wider choice of manufacturers/contractors which in turn should translate into lower costs though initial estimates from one or two timber framers suggests this isn’t a given.

I’ve always been attracted to structural insulated panels (SIPs) as a system.  They’re extremely simple as a concept.  Structural panels are formed by sandwiching insulation between two layers of wood sheet material, typically OSB eg. Kingspan Tek.  They lend themselves to creating very low u-value walls, with their large spans and uniform nature aiding in the attainment of very good airtightness levels.  Cut to precision off-site they seem to lend themselves to a quick and efficient construction on-site with minimal material wastage.  I am though struggling a little to determine the differences between the insulating cores used by different manufacturers and I’d want to do a little more research before settling on this route.

A further option, brought to my attention again by our visit to Ecobuild is a hybrid system like Val-u-therm that takes advantages of the benefits of both timber frame and SIP panels.   As with SIP panels Val-u-therm is able to deliver very low u-values – all the way down to .09W/m2K in fact – and enable very airtight construction.  One particularly attractive quality of this hybrid system is that the timber studs used internal of the sandwich sheet materials allow longer spans than the conventional SIP which could be particularly useful in terms of the creation of our contemporary open plan vaulted roof living space.  Additionally the insulating material used in the val-u-therm is a bio-based polymer derived from recycled vegetable oil giving reassurance that the insulation is environmentally considered too.

In summary, pros and cons to each; a decision will be made no doubt when the current cost estimates are firmed up…

Ecobuild 2014

Dan and I headed to the Ecobuild conference at the London Excel centre last month.   It seemed a good and fun opportunity to research the industry for new and relevant products and to speak to various experts.  It didn’t disappoint.  Although I was concerned to find that the event appeared quite a bit smaller than when I last attended we did find some really interesting products and were able to make some useful contacts.

The most interesting – and I thought it was a very understated launch given the potential of the product – was a cement-free concrete called Cemfree.   Cemfree purportedly uses 95% Ground Blast Furnace Slag (GGBS), seemingly overcoming previous complications when replacing higher percentages of Portland cement.  Given the carbon intensity of cement manufacture – regularly cited as being responsible for approximately 5%-8% of global CO2 emissions alone – this is a really exciting development.  Cemfree themselves report that their product reduces the carbon legacy of concrete from approximately 312kgs to 31kgs per m3.  It would appear to have additional benefits over traditional cement based concrete as well; improved durability, no need for jointing, reduced requirement for reinforcing, improved thermal mass qualities and lower water demand.  One further benefit that Cemfree didn’t appear to be pushing but which I think very attractive from a specifying point of view is that its’ natural finished colour is light and present, almost a creamy colour.  The premium in terms of price appeared absorbable at a suggested 10% though whether that is accurate in reality remains to be tested.  All in all it is a product we will most definitely be investigating.  It is a pity a polished concrete floor isn’t perhaps the most practical for house intended to accommodate the elderly otherwise it would be interesting to explore using the slab as the finished floor surface!

Other products of note included a greywater harvesting system with integrated heat recovery called reaqua+ that I’d not come across before.  I am much more familiar with rainwater harvesting products than greywater – the former seeming to have established a better reputation than the latter.  The ability to reduce water consumption whilst also benefiting from the recovery of heat from greywater is an attractive one.  There are still calculations to be run in terms of cost benefit over rainwater harvesting.  Rainwater harvesting offers an opportunity to reduce water demand further than greywater recycling.  However the shower heat recovery products that I’ve come across are on the whole extremely expensive and simply not worth the investment.  The only reasonably priced product, though still not cheap, that I’ve come across is the Zyhpo shower heat recovery system.  This combination is likely to be at least £1000 more expensive than the neat and compact reaqua unit, probably more once the additional building costs of burying the rainwater tank are taken into account, so whether it would be worth the investment is questionable.  I’ll certainly be running calculations.

There were other finds; some promising contacts in the windows department.  Central to the design of the building is a large corner window on the first floor which captures the views right back down the valley.  The plan is for the window to be frameless with a butted silicone joint.  Finding a manufacturer capable of doing this at a reasonable price is going to be a challenge.  It was also interesting to come across the construction system Val-u-therm.  This is a closed panel hybrid system encompassing principles of timber frame and structural insulated panel (SIP) systems.  I’ll discuss this more in due course but it could be a really attractive option for us.  Cladding, flooring, lighting options, the list goes on.  All in all a worthwhile visit and I’d recommend to anyone considering or planning their own build.

A word on our Architect

I don’t think I’ve stated yet that the architect we selected for the project is Dan Kerr of MawsonKerr, a small but growing practice in Newcastle upon Tyne.  Though a relatively young firm MawsonKerr have a solid portfolio, including work delivered under their own name but also at former practices.  As a certified Passivhaus designer Dan fitted the bill in terms of what we were looking for in terms of sustainability design led by first principles.  He was commissioned over other equally qualified and perhaps more proven architects because of his displayed passion for the job and an anticipation that he would make the best fit at a personal level on what was always going to be an ambitious and challenging job.  We’ve not regretted making the decision on that basis at all; over what was a testing and protracted planning process Dan demonstrated continual enthusiasm and commitment to the project.  We’re subsequently very much looking forward to continuing the relationship now that it’s time to deliver.

Brettstapel

I’d like to write early on about our preferred method of construction – Brettstapel.  I say preferred because there is still a considerable amount of feasibility work to be done before being able to say with any confidence whether we can actually use it.  Whilst it is an established method in Germany/Austria/Switzerland it is not so here in the UK (though it ought to be!).  Brettstapel is a simple solid timber construction; softwood lengths are stacked side by side and connected together using hardwood dowels.  Needing no nails or glue the system works by using dowels of a lower moisture content than the softwood lengths.  Over time the dowels absorb moisture in order to achieve equilibrium, in the process expanding and locking the timbers together creating load bearing-structural panels.

BRET 1Brettstapel Wall

As the video touches on, the benefits of Brettstapel are many.  It has excellent structural properties and has been utilised in hotels, industrial buildings and bridges.  It offers too all the benefits of off-site prefabrication, with savings from the refinement of the manufacturing process and ease of erection on site.  The accuracy of manufacture it affords also means extremely high standards of airtightness are easily accomplished.  It also has very good fire resistance properties (a property many erroneously don’t associate with massive timber).

What makes Brettstapel such an attractive prospect however, and for my mind gives it the edge over so many alternatives, is its environmental qualities.  The amount of timber used means massive amounts of carbon dioxide are sequestered, “locked-up”, in the building.  The structural nature of the panels means that much lower grade timber than is usually used in timber frames can be employed.  This means rapid growth species, such as Sitka spruce, can be easily used which is beneficial for the carbon sequestration process and simultaneously gives a high value output to what is normally a low-value product.  With no glue being used in their manufacture, and the timber of the panels forming the internal finish, Brettstapel also contributes to a very healthy internal environment with no hazardous compounds, or VOCs, released as there are with other systems.  The internally exposed timber via its moisture transfusive and hygroscopic properties further benefits the internal air quality by assisting in maintaining ideal levels of humidity.

All in all, with appropriate sourcing, it appears a fantastic systems from a sustainability point of view.  Clearly such a system will be more costly than conventional timber frame, but just imagine if we were able to turn our housing crisis into a climate solution!  In my mind I can’t see with the right controls why this system shouldn’t qualify for carbon credits?  The additional financial cost to the developer could be offset by the ability to sell credits on the back of the sequestration of carbon to those looking to offset their carbon emissions, just as some forestry is planted for offsetting purposes.  Anyway, perhaps it would be sensible to concentrate on the house for now.  Indeed if we are able to pursue our desired intention and use domestic timber in the manufacturing process this will be the first house in the UK to do so.  There is a house in the Scottish Borders, Plummerswood, which used Brettstapel sourced from Austria, and there is a visitor centre in North Wales, Coed-y-Brenin, which used domestic timber in locally manufactured panels, but as yet no residence which does so.  We will have to source and assemble our own supply chain and even then the final cost is extremely uncertain so it is going to be no small challenge!!!

Massive Timber Buildings

For our build we are exploring a solid timber construction system called Brettstapel.  I will blog about its particular qualities shortly, but first I would like to share a video I viewed recently that gets across very clearly the benefits of using timber in buildings.  Housing the globe’s growing population represents an enormous environmental challenge; solid or ‘massive’ timber buildings represent a solution which could help actually mitigate rising emission levels.  There aren’t many win-win solutions out there – this has to be one…

Planning Battle Won!

In November 2011 the response to our pre-planning application which inquired about the principle of a new dwelling within the curtilage of the existing group of houses that make up Coldtown (a large Farmhouse, a converted fortified Bastle, and a traditional cottage) the response was an unqualified NO!  This week we received a relatively unqualified YES!  Here I want to flesh out some of the reasons I think lay behind our success:

FIRST PRINCIPLES:  On our relatively population dense island planning is a contentious and emotive issue.  Tynedale, the former district council now subsumed into Northumberland County Council, which in essence was the local authority that we had to deal with, had/has a reputation for being extremely conservative.  Perhaps with good reason – much of the Northumberland countryside it is responsible for is unspoilt and highly scenic.  However there is a distinction between a conservative and a negative approach.  Rural areas can and will benefit from an attitude that seeks opportunities for positive development rather than merely minimising it.  For those who are really interested these principles are well communicated in the 2008 Taylor report, much of which seems to have fed into the treatment of rural areas under the National Planning Policy Framework (NPPF).

In our own case we were extremely confident in the credentials of our proposal from a first principles sustainability point of view.  The proposal includes the conversion of an existing building whilst the new build section occurs on previously developed land.  Visually, from the only angle by which it could be viewed by the public, the building is largely concealed by a tall brick wall which currently frames a walled garden along the south boundary of the site.  That along with the removal of a large unsightly and unused concrete barn which currently lies in a more prominent position on the site means development offers an opportunity to actually improve the visual amenity.  The design comprises an attractive piece of contemporary architecture using materials familiar to the local vernacular in a sympathetic way.  Aesthetic appeal is obviously a subjective matter but sympathetic contemporary architecture should surely be encouraged over the poor pastiche which appears to be go to solution, certainly here in Northumberland.  Using passivhaus principles energy demand for the house is minimised, and the energy that is required is generated by renewable technologies.  Rainwater harvesting is utilised and the overall ecology of the site is actually enhanced.  Consideration too is given to the construction materials employed.  The current preferred construction method is a system called Brettstapel – a solid timber system using no nails or glues, offering numerous sustainability benefits.  A German system originally, it’s never been done before in the UK using domestic timber so there’s still considerable feasibility work to be done on that front, but whatever the final solution it will be environmentally considerate.  With my connection through my MSc I have also been able to get Newcastle University on board who will be monitoring both the build and operation in order to gather data and learning on low energy building, which in turn has helped deliver the authenticity of our intentions  The development also offers the benefit of improving the setting for the existing houses at the location, which includes a Grade II listed Bastle, as the removal of the concrete barn opens up the approach, the associated landscaping makes the area visually more attractive, and way-finding around the settlement, which is currently confused is improved.

With all these qualities, and more, we were not hesitant in defending our case.  It took time, was more costly than it should have been, and involved some very frustrating conversations, but with time available and the conviction to continue we slowly won each argument on a first principle basis.

CHANGING LEGISLATION: There is no denying that the changing legislative context that occurred over the duration of our application was enormously beneficial to us.  The NPPF which was introduced in March 2012 and replaced hundreds of pages of planning guidance with a much more concise 65, stated explicitly for the fist time that the purpose of the planning system is to help attain ‘sustainable development’ and that a ‘presumption in favour of sustainable development’ is a ‘golden thread’ that should run through all decision-taking.  It’s perhaps depressing that these statements needed to be made, but I’m not sure it was the fundamental concern of the legislation that it replaced.  This then is a move to be welcomed; it means first principles such as those outlined above, come far more into play.  And because Northumberland CC have been so slow in producing a local development plan our application was judged solely against the NPPF.

Whilst arguably ambiguous the NPPF introduces a much more flexible framework for development in rural areas (here the most relevant paragraph is perhaps 55).  This is appropriate given the dynamic nature of rural settlements relative to urban ones.  The recognition for example (paragraph 29) that sustainable transport solutions will vary from urban to rural contexts is a good one.  It was a source of enormous frustration to have to face down the argument at the outset of our application that because our proposal was not within the immediate built up area of the local village (approx. 1 mile down the road) it was not plugged into a public transport system and therefore could not be sustainable.  The reality is that there is no meaningful public transport system in West Woodburn (it is a village of a few hundred in the most dispersed county in the country), nor, given that successful networks depend on scale, will their likely ever be one.

The lesson for persons in rural Northumberland or similar areas around the country, is that if your proposal is strong from a first principles point of view then the NPPF, and accordingly local development plans, will offer the framework in which to win that argument.  Whilst it is right that they do so, particularly in a rural context, planners are being asked to deliberate, rather than hide behind a system which doesn’t offer the flexibility to reflect the particular circumstances of any individual proposal, between what is and what isn’t a sustainable proposal.   My experience is that planners could do with improving their sustainability literacy but also that if you are confident of your case then room is available to win it.

A COMMITTED TEAM:  Given the challenge we faced it was paramount that everyone involved in the project bought into what we were trying to achieve.  Given the ambition of what we want to achieve this was always a central  consideration for our choice of architect.  Though there were of course other factors in our final selection the commitment of our architect has been second to none.  His commitment has meant that we have been able to take on a much more protracted application process than anticipated without fees escalating.  Similar can be said of our planning consultant who, given the uniqueness of our challenge, and her appreciation of what were trying to achieve was motivated to go above and beyond in terms of her commitment to our case.  Having had the support of a unified and committed team has made what could have been an extremely frustrating process endurable and all the more satisfying to win!